Search results

Search for "optical tweezers" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

Investigations on the optical forces from three mainstream optical resonances in all-dielectric nanostructure arrays

  • Guangdong Wang and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 674–682, doi:10.3762/bjnano.14.53

Graphical Abstract
  • , the scattering force is along the direction of light propagation, which is not conducive for object capturing. The gradient force is along the gradient direction of the non-uniform distribution of the light intensity in space, and is well-known for its application in optical tweezers [2]. Therein a
  • strong laser beam generates a piconewton level of force, which can be used to manipulate small dielectric particles, including biological entities such as DNA, enzymes, and cells. The underlying physics of nanoparticle manipulation by optical tweezers can be interpreted as the trend of the particle to
  • move to a region of high field strength to reduce its energy [3]. Unfortunately, due to the diffraction limit, light cannot be focused onto the subwavelength volume; so it is very difficult for optical tweezers to capture nanoscale objects. Recently, plasmonic nanotweezers have proved their capability
PDF
Album
Full Research Paper
Published 02 Jun 2023

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • refraction between the particle and the surrounding solvent is also required. For manipulation of smaller particles and molecules, typically, electrophoretic [4] and electrokinetic [5] forces are used, but they need sophisticated electrode geometries. A combination of optical tweezers and an array of
  • -time force feedback can also be implemented with optical tweezers [14][15][16]. Recently, systems based on high-precision position detection and feedback control running at 100 kHz have been employed to generate arbitrary potentials for micrometer-sized particles [17][18]. A less commonly used
  • center of the trap. The simplicity of the design enables mostly software-based modification of an existing optical tweezers system. i.e., the video feedback loop has to be modified and a sample cell has to be constructed with an appropriate absorbing material on the substrate. Further experimental
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020

Examination of the relationship between viscoelastic properties and the invasion of ovarian cancer cells by atomic force microscopy

  • Mengdan Chen,
  • Jinshu Zeng,
  • Weiwei Ruan,
  • Zhenghong Zhang,
  • Yuhua Wang,
  • Shusen Xie,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2020, 11, 568–582, doi:10.3762/bjnano.11.45

Graphical Abstract
  • cells could be detected biomechanically. At present, a variety of research technologies, such as optical tweezers, micropipette aspiration, magnetic twisting cytometry and atomic force microscopy (AFM), have been developed to characterize the mechanical properties of biological samples [7][8][9][10
PDF
Album
Full Research Paper
Published 06 Apr 2020

Features and advantages of flexible silicon nanowires for SERS applications

  • Hrvoje Gebavi,
  • Vlatko Gašparić,
  • Dubravko Risović,
  • Nikola Baran,
  • Paweł Henryk Albrycht and
  • Mile Ivanda

Beilstein J. Nanotechnol. 2019, 10, 725–734, doi:10.3762/bjnano.10.72

Graphical Abstract
  • from 60 to 100 nm. This thickness allows for the flexibility of the several micrometers long, horizontally placed and randomly oriented SiNWs. The strong SERS enhancement mechanism relies on bringing the SiNWs to nanogap-vicinity, which creates a system comparable to optical tweezers and allows for
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2019

Mechanical and thermodynamic properties of Aβ42, Aβ40, and α-synuclein fibrils: a coarse-grained method to complement experimental studies

  • Adolfo B. Poma,
  • Horacio V. Guzman,
  • Mai Suan Li and
  • Panagiotis E. Theodorakis

Beilstein J. Nanotechnol. 2019, 10, 500–513, doi:10.3762/bjnano.10.51

Graphical Abstract
  • coefficient n in the indentation curves measuring the force as a function of hn. We found n = 3/2 in the linear regime, which corresponds to the Hertzian theory [12]. Tensile deformation The experimental calculation of the stress–strain data at the nanoscale can be done by using optical tweezers (OT) [50
PDF
Album
Full Research Paper
Published 19 Feb 2019

A simple extension of the commonly used fitting equation for oscillatory structural forces in case of silica nanoparticle suspensions

  • Sebastian Schön and
  • Regine von Klitzing

Beilstein J. Nanotechnol. 2018, 9, 1095–1107, doi:10.3762/bjnano.9.101

Graphical Abstract
  • instruments, e.g., surface force apparatus (SFA) [2][4][5][6], thin film pressure balance (TFPB) [7][8][9][10][11], total internal reflection microscope (TIRM) [12][13][14][15][16], optical tweezers [17] or colloidal probe atomic force microscope (CP-AFM) [18][19][20][21]. Oscillatory forces have been
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2018

Active multi-point microrheology of cytoskeletal networks

  • Tobias Paust,
  • Tobias Neckernuss,
  • Lina Katinka Mertens,
  • Ines Martin,
  • Michael Beil,
  • Paul Walther,
  • Thomas Schimmel and
  • Othmar Marti

Beilstein J. Nanotechnol. 2016, 7, 484–491, doi:10.3762/bjnano.7.42

Graphical Abstract
  • motion of embedded beads. To exert a sinusoidal motion onto the reference bead an optical tweezers setup in combination with a microscope is used to investigate the motion of the response beads. From the lock-in data the so called transfer tensor can be calculated, which is a direct measure for the
  • ability of the network to transmit mechanical forces. We also take a closer look at the influence of noise on lock-in measurements and state some simple rules for improving the signal-to-noise ratio. Keywords: cytoskeleton; intermediate filaments; lock-in technique; microrheology; optical tweezers
  • server [20]. Results and Discussion Theoretical aspects In this section we have a deeper look at the theory behind the lock-in technique and show how to calculate the transfer tensor. Prior to the determination of the lock-in amplitude one particle has to be trapped and excited by optical tweezers. Then
PDF
Album
Full Research Paper
Published 24 Mar 2016

Single-molecule mechanics of protein-labelled DNA handles

  • Vivek S. Jadhav,
  • Dorothea Brüggemann,
  • Florian Wruck and
  • Martin Hegner

Beilstein J. Nanotechnol. 2016, 7, 138–148, doi:10.3762/bjnano.7.16

Graphical Abstract
  • under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG)-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp
  • here demonstrate that handles produced with our protein–DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular recognition in time-critical molecular motor studies. Keywords: DNA handles; optical tweezers; protein labels; single molecule
  • ; Introduction Most mechano-enzyme and protein–DNA interaction studies using optical tweezers (OT) are performed in a dumbbell configuration, where a single or double-stranded DNA molecule or protein is tethered between two optically trapped beads. Alternatively, one of the two beads can be held by a
PDF
Album
Full Research Paper
Published 29 Jan 2016

Atomic force microscopy as analytical tool to study physico-mechanical properties of intestinal cells

  • Christa Schimpel,
  • Oliver Werzer,
  • Eleonore Fröhlich,
  • Gerd Leitinger,
  • Markus Absenger-Novak,
  • Birgit Teubl,
  • Andreas Zimmer and
  • Eva Roblegg

Beilstein J. Nanotechnol. 2015, 6, 1457–1466, doi:10.3762/bjnano.6.151

Graphical Abstract
  • ], micropipette aspiration [16] and magnetic/optical tweezers or optical traps [17][18][19], atomic force microcopy (AFM) is a versatile and potent tool for studying biological structures [20][21][22]. AFM enables both topographical and force curve measurements (atomic force spectroscopy) [23]. The former allow
PDF
Album
Full Research Paper
Published 06 Jul 2015

Optical near-fields & nearfield optics

  • Alfred J. Meixner and
  • Paul Leiderer

Beilstein J. Nanotechnol. 2014, 5, 186–187, doi:10.3762/bjnano.5.19

Graphical Abstract
  • radiation could emerge from such structures (so-called spasers). The mechanical effects of the optical near-fields can be substantial. Examples are specially shaped nano-holes, studied by Rosa et al. [7], which can be much more efficiently used as plasmonic optical tweezers for nano-objects than the usual
PDF
Editorial
Published 19 Feb 2014

Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review

  • Sidney R. Cohen and
  • Estelle Kalfon-Cohen

Beilstein J. Nanotechnol. 2013, 4, 815–833, doi:10.3762/bjnano.4.93

Graphical Abstract
  • limited to, optical tweezers [1], surface force apparatus [2][3], nanomanipulators [4], electron and other microscopy techniques. Two techniques which have made great advances in the studies of nanomechanics are instrumented nanoindentation and scanning probe microscopy. The versatility and utility of
PDF
Album
Review
Published 29 Nov 2013

Analysis of fluid flow around a beating artificial cilium

  • Mojca Vilfan,
  • Gašper Kokot,
  • Andrej Vilfan,
  • Natan Osterman,
  • Blaž Kavčič,
  • Igor Poberaj and
  • Dušan Babič

Beilstein J. Nanotechnol. 2012, 3, 163–171, doi:10.3762/bjnano.3.16

Graphical Abstract
  • ; low Reynolds number hydrodynamics; magneto-optical tweezers; microfluidics; Introduction The ability to move or to generate a flow in the surrounding medium is essential for living organisms. Unicellular organisms, for example, move when searching for food or better living conditions. In
  • avoid any wall effects, the flow was mapped and measured in the central part of the cell. Magneto-optical tweezers Once the cell was filled with the bead mixture, the artificial cilium was assembled with optical tweezers that were built around an inverted optical microscope (Zeiss, Axiovert 200M
  • , Achroplan 63/0.9W objective; Nd:YAG laser, 1064 nm, acousto-optic deflectors IntraAction and beam-steering controller Tweez by Aresis, d.o.o.). After the coarse initial positioning of the beads, the optical tweezers were switched off. The attractive force between the beads that stabilised the chain, the
PDF
Album
Full Research Paper
Published 24 Feb 2012

Distance dependence of near-field fluorescence enhancement and quenching of single quantum dots

  • Volker Walhorn,
  • Jan Paskarbeit,
  • Heinrich Gotthard Frey,
  • Alexander Harder and
  • Dario Anselmetti

Beilstein J. Nanotechnol. 2011, 2, 645–652, doi:10.3762/bjnano.2.68

Graphical Abstract
  • techniques, e.g., AFM [5] or optical tweezers [6], opens up novel means of manipulating and controlling matter at the nanometer scale, and also applications such as optomechanics [7] and externally controlled optical switching [8][9][10][11]. Nevertheless, surface bound fluorescence assays require solid
PDF
Album
Full Research Paper
Published 29 Sep 2011

Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

  • Samer Darwich,
  • Karine Mougin,
  • Akshata Rao,
  • Enrico Gnecco,
  • Shrisudersan Jayaraman and
  • Hamidou Haidara

Beilstein J. Nanotechnol. 2011, 2, 85–98, doi:10.3762/bjnano.2.10

Graphical Abstract
  • manipulation systems. In the former, laser trapping (optical tweezers) or electrostatic or magnetic field forces are utilized. Thus, Yamomoto et al. [4] cut DNA using restriction enzymes on a laser trapped bead, Vonna et al. used magnetic tweezers and beads to stretch cell membranes [5] and Stroscio et al. [6
PDF
Album
Full Research Paper
Published 04 Feb 2011
Other Beilstein-Institut Open Science Activities